
NRL Report 8514

A PRF Sorter Based on
List Manipulation Techniques

J. 0. COLEMAN

Radar Analysis Branch
Radar Division

November 20, 1981

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8514

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing
A PRF SORTER BASED ON LIST NRL problem
MANIPULATION TECHNIQUES 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(-)

J. 0. Coleman

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory 62712N; XF12-151-104;
Washington, DC 20375 NRL Problem 53-0612-00-1

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy November 20, 1981
Naval Electronics Systems Command 13. NUMBER OF PAGES

Washington, DC 20376 61
I4. MONITORING AGENCY NAME 8 ADDRESS(it different Iront Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15.. DECL ASSI FICATION! DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different Iro. Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rov-re side if neceks ry and Identify by block number)

PRF sorting
Pulse sorting
De-interleaving
Sorting

ZO. ABSTRACT (Continue on rovere olde if neceesary and identify by block nunlber)

This report describes a program that uses list processing techniques to sort pulses into
sequences uniformly spaced in time, a process referred to as PRF sorting. The detailed
discussion of the program's operation is based on a LISP implementation that functions on a
demonstration level. A listing of a PASCAL version capable of operation on real data is also
given. The unique feature of the algorithm used here is the ability to postpone the decision to
assign a pulse to a particular existing pulse train. This is achieved by duplicating the existing

(Continued)

DD JAN 73 1473 EDITION OF I NOV 65 IS OSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (G7han Date Entered)

I

I

1.

i

SECURITY CLASSIFICATION OF THIS PAGE (w.n Dtia En.t-d)

1 20. ABSTPACT r

pulse train and assigning the pulse to one of the two resulting pulse trains. Both pulse trains are
then carried in the system, with equal status, until eventually a decision is made as to which is
correct. The list structures used, native to LISP, prevent the duplication of pulse trains from
resulting in unreasonable storage requirements.

SECURITY CLASSIFICATION OF THIS PAGEflhen Date Entered)

ii

i

t - l s $ u U }

CONTENTS

INTRODUCTION.. 1

OVERVIEW OF THE SORTING ALGORITHM .. 1

SOURCES OF MACLISP INFORMATION ... 3

DETAILS OF THE PRF SORTER 4

PERFORMANCE OF THE PASCAL VERSION .. 14

SUMMARY .. 15

REFERENCES .. 16

APPENDIX A - Some Functions to Support Sorter Testing 17

APPENDIX B - Examples of the Sort Process .. 18

APPENDIX C - PASCAL Version of the Sorter ... 20

iii

A PRF SORTER BASED ON LIST MANIPULATION TECHNIQUES

INTRODUCTION

This report describes a program which takes a temporally ordered list of pulses and sorts the
pulses into groups, each of which is characterized by a constant pulse repetition frequency (PRF). Such
algorithms are generally known as "PRF sorters" or "pulse de-interleavers." Our design requirements
were twofold. First, a "reasonably" capable algorithm was needed to sort experimental data previously
stored on magnetic tape. Occasional placement of a pulse in an incorrect group was considered toler-
able. While real-time operation was not necessary, the program was required to sort large collections of
input data (millions of pulses) for a reasonable cost on NRL's Advanced Scientific Computer (ASC).
Second, as this algorithm and program design were part of a research project directed primarily at other
ends (radar/ESM integration), the design itself needed to be completed as quickly and inexpensively as
possible. Because the cost of development would likely dominate the life-cycle cost of the software,
this second requirement was the more important factor.

The choice of a programming language was restricted by the availability of languages on the ASC
(where the input data files were available) to FORTRAN, RATFOR (a FORTRAN preprocessor adding
structured control constructs to FORTRAN), or PASCAL. Because the Sorter would involve extensive
manipulation of lists of pulses, FORTRAN and RATFOR seemed inappropriate. PASCAL was there-
fore the language of choice. (The input routines for the PASCAL version of the PRF Sorter were actu-
ally written in RATFOR to be compatible with ASC file handling software.) Unfortunately, the pro-
gramming environment on the ASC (a poor editor, no interactive debugging, and a clumsy job control
language) made the prospect of undertaking the initial development of an algorithm on the ASC rather
unappealing. The decision was therefore made to do the development of the algorithm in LISP on a
different computer system, the MIT MACSYMA Consortium machine,* thereby gaining time through
the use of superior editing facilities and a naturally interactive language with excellent debugging
features. Since LISP is first and foremost a list processing language, it fit the problem well. (While I do
not maintain that the algorithm presented here is sufficiently developed for use in a piece of physical
equipment operating in real time, the recent demonstration of a microprocessor which executes LISP
primitives directly [1,2] implies that a LISP-based approach to the sorting problem may be more practi-
cal than its use as a development tool might imply.) Once an algorithm had been successfully developed
and debugged in LISP it could be translated to PASCAL. This turned out to be a good strategy since a
number of approaches to the sorting problem were easily explored in LISP before settling on one for
the final implementation.

As it turned out, the LISP version is both much shorter and easier to understand than the PAS-
CAL translation. Consequently, the LISP version is presented here. The next section gives an over-
view of the sorting algorithm in general terms. A section on MACLISP, the dialect of LISP used, fol-
lows. The Sorter is then discussed in detail, with the source code interspersed with the text. The
report concludes with a description of the performance of the PASCAL translation and a short sum-
mary.

OVERVIEW OF THE SORTING ALGORITHM

The input to the Sorter is a stream of pulses ordered by time of arrival. The Sorter output con-
sists of groups of pulses. Each group, also referred to as a pulse train or simply "train," contains

Manuscript submitted on June 4, 1981.
*Supported in part by the Office of Naval Research under grant N00014-77-C-0641.

1

J.0. COLEMAN

member pulses that could have been drawn from a source with a uniform PRF. For example, the times

of arrival of the pulses within a group might form an arithmetic sequence like

(10 13 16 19 22),

or the times might form an arithmetic sequence with some elements missing, like

(10 16 19 25 28).

The Sorter operates sequentially, taking in a pulse at a time and putting out a pulse train whenever it

becomes certain a train is complete. Although the trains come out approximately in chronological

order, there is no guarantee that a train finishing earlier will be output before a train finishing later.

The sequence of operations in the Sorter is as follows:

1. Get the next pulse.

2. Add the pulse to any trains for which the pulse is a "perfect fit." A perfect fit would be
a situation in which the interval between the time of arrival of the new pulse and the
time of arrival of the last pulse already in the train matched exactly the interval between
the times of arrival of the last two pulses in the train. If the intervals do not match

quite closely enough, it may be considered "fits OK" rather than a perfect fit.

3. If there were no perfect fits in the previous step, split (duplicate) each train for which
the pulse fits OK into two trains, add the pulse to one only, and start a new train con-
sisting only of the new pulse. If there are no fits at all, start a new train with the pulse.

4. Output any trains that have become "old" (i.e., that have no chance of ever being

updated again) after resolving the conflicts (pulses in common) with other trains.

5. Repeat all of the above until no more pulses are available.

6. Finally, resolve the conflicts among the remaining trains and output them.

An important feature of the Sorter is that whenever it is unclear whether or not a particular train
should have the pulse added both options can be temporarily accepted, thus postponing the real deci-

sion until more information is available. This introduces two potential difficulties. The first involves
storage management. Since trains are frequently split into two trains, this strategy has the potential for

requiring an enormous amount of storage. This problem is solved nicely by the use of the list handling
facilities of LISP (the core of these facilities was duplicated in the PASCAL translation so as to provide
the same benefits), and as a side benefit, there are no arbitrary limits on the allowed numbers of partic-
ular items in the system, e.g., the number of trains or the number of pulses in a train. The only limit

on storage is a limit on the combined storage used for trains, lists of trains, and pulses. (While this

isn't strictly true in the PASCAL translation, a similar statement, almost as strong, would apply there as
well.) The mechanism providing these benefits will be mentioned briefly in the detailed description of

the Sorter. For a more thorough description, see chapter 9 of Ref. 3.

The second potential difficulty introduced by train splitting is in the conflict resolution process.
Since trains, once split, have equal status, there will eventually be a time (probably after both have

been updated with additional pulses) when a decision will have to be made as to which is the "better"

train, that is, the train most likely to be correct. While no definitive solution to this problem has been
reached, the simple measures of train quality used here seem to result in satisfactory sorting of our

experimental data. Better measures of train quality might be required for more demanding applications.

2

NRL REPORT 8514

SOURCES OF MACLISP INFORMATION

The discussion of the Sorter in the following section is in sufficiently general terms that a reader
with little or no understanding of LISP should be able to follow most of it. However, since the discus-
sion of the Sorter is based directly on the MACLISP source code, the reader does need some familiarity
with the language to understand the correspondence between the discussion and the code itself. It is
relatively simple to gain a working knowledge of LISP, and there are several good texts available. My
favorite text is Winston and Horn [3], which has the advantage of being based on the MACLISP
dialect. For the purposes of this report all that is really necessary is an understanding of LISP
equivalent to the material covered in the first three chapters of that book plus parts of chapters 6 and 9.
This is true because the Sorter was written in a fairly narrow subset of LISP so that it could be straight-
forwardly translated to PASCAL. Other source books for an introduction to LISP are Siklossy [4] and
Winston [5].

There are two MACLISP forms (functions) used in the Sorter, LET and DO, which are not dis-
cussed in the texts because they are not yet standardized across all LISP dialects. They will therefore
be described briefly here. The reader with no familiarity with LISP whatever would do well to skip
directly to the discussion of the Sorter in the next section.

A fairly intuitive definition of the macro LET is [61

(LET ((A <el>) (B <e2>) ... (C <en>))
<computate>)

macro-expands into

((LAMBDA (A B ... C) <computate>)
<el> <e2> ... <en>)

The DO special form (this discussion is edited from Moon [7]) provides a generalized "do loop"
facility, with an arbitrary number of "index variables" whose values are saved when the DO is entered
and restored when it is left; i.e., they are bound by the DO. The index variables are used in the itera-
tion performed by DO. At the beginning they are initialized to specified values, and then at the end of
each trip around the loop the values of the index variables are changed according to specified rules.
DO allows the programmer to specify a predicate which determines when the iteration will terminate.
The value to be returned as the result of the form may optionally be specified.

DO looks like

(DO ((var init repeat)...)
(end-test exit-form...)
body...)

The first item in the form is a list of zero or more index variable specifiers. Each index variable
specifier is a list of the name of a variable VAR, an initial value INIT which defaults to NIL if it is
omitted, and a repeat value REPEAT. If REPEAT is omitted, VAR is not changed between loops.

All assignment to the index variables is done in parallel. (In the Sorter care was taken not to
depend on this feature.) At the beginning of the first iteration, all the INITs are evaluated, then the
VARs are saved and then SETQed to the values of the INITs. To put it another way, the VARs are
lambda-bound to the values of the INITs; the INITs are evaluated before the VARs are bound. At the
beginning of each succeeding iteration those VARs that have REPEATs get SETQed to the values of
their respective REPEATs. All the REPEATs are evaluated before any of the VARs are changed.

The second element of the DO form is a list of an end-testing predicate END-TEST and zero or
more forms, the EXIT-FORMs. At the beginning of each iteration, after processing of the REPEATs,

3

J.O. COLEMAN

the END-TEST is evaluated. If the result is NIL, execution proceeds with the BODY of the DO. If
the result is not NIL, the EXIT-FORMs are evaluated from left to right and then DO returns. The
value of the DO is the value of the last EXIT-FORM, or it is NIL if there were no EXIT-FORMs. The
second element of the DO-form resembles a COND clause.

The remainder of the DO-form constitutes a PROG-body. When the end of the BODY is
reached, the next iteration of the DO begins.

DETAILS OF THE PRF SORTER

In this section the LISP code making up the Sorter is described in detail. The Sorter is made up
of many functions, each of which is discussed individually below. As an aid to remembering the rela-
tionships between the various functions, Table 1 shows "who calls whom." The format is similar to an
outline. Each function directly calls those functions shown below it indented one more level. For
example, DECIDE directly calls REMOVE-PULSES and BEST. It is important to realize, however,
that Table 1 shows only the "static" structure of the program. The order in which functions are shown
in the table corresponds to the order in which they appear in the program code, rather than the chrono-
logical order in which they are called.

The function SORT is the equivalent of a "main" program. It accepts a single argument, PULSES,
presumed to be an ordered list of pulses with the earliest pulses at the beginning of the list, and returns
a list of pulse trains. Each pulse train in turn contains those pulses which the program has decided
belong together. An example should help make this clear. If, after loading the entire program into
LISP from a file, the user were to type

(sort '(01 5 610 11 15 16 20))

the LISP system would respond by typing out

((20 15 10 5 0) (16 11 6 1))

which is the obvious way to sort the sequence given. Notice that the user's input is shown somewhat
indented from the rest of the code. This is not a characteristic of the LISP system (as it would be, for
example, on most systems using the APL language) but was added to clarify the presentation. This
convention will be used for the remainder of this report.

A few comments on data structures are in order before the code itself is discussed. Many of the
functions making up the Sorter deal with lists of pulse trains. Knowledge of the internal structure of a
train is restricted, however, to a small handful of functions for testing and manipulating trains. This
ensures that if the need should arise to change the representation, perhaps to include more features, all
would not be lost. As it turned out, the simplest possible representation of a train was kept throughout
the development. A train is simply a chronologically ordered list of pulses, with the most recent pulses
(those with the chronologically latest times of arrival) at the head of the list.

The detailed knowledge of the representation of a pulse is confined to a single function. Again
the representation used in this development was the simplest possible, representing a pulse by its time
of arrival. A somewhat more complex representation was used in the PASCAL translation, as other
(than time) data pertaining to the pulse needed to be kept for later use.

In the material that follows, the actual LISP code is given interspersed with the corresponding dis-
cussion in the text. The code is suitable for feeding directly into MACLISP in the order given, and it

4

NRL REPORT 8514

Table 1. The Function-Calling Structure of the Sorter

SORT
GROUP

GROUPS
GET-PULSE
PUT-PULSE
DECIDE t

REMOVE-PULSES t
TRAIN-MINUS

BEST
BETTER-OF

UPDATE
UPDATE-PERFECT

INIT-TRAIN
PERFECT-FIT

NR-PULSES *
TOA *
LATEST-PULSE *
NEXT-LATEST-PULSE *
ADD-PULSE

INIT-TRAIN
UPDATE-OK

INIT-TRAIN
FITS-OK

ADD-PULSE
OUTPUT-AGED

OLD
QUAL-TRAIN
TRAIN-MINUS
REMOVE-PULSES t
DECIDE t

Indicates a "utility" function.
Only the first use shown.

t Indicates a function called elsewhere also.
Functions it calls shown with first use only.

has been executed directly from the computer-stored manuscript. Therefore, unless errors are intro-
duced in typesetting, the code should be accurate. An attempt was made to describe the general opera-
tion of the Sorter so that it can be understood by readers who are not familiar with LISP. Such readers
should probably skip not only the LISP code but the footnotes in this section as well, as they were
intended for those with a desire to understand the LISP at a very detailed level.

Here is the definition of (i.e., code for) SORT, the "top-level" function:

(defun sort (pulses)
(let ((old-groups nil)

(trains nil)
(max-pri 10))

(do ((this-group (group) (group))
(result nil (cons this-group result)))

((not this-group) result))))

5

J.O. COLEMAN

The SORT function itself does two things. It initializes some "global" variables used in subordi-
nate functions, and it repeatedly calls on the function GROUP. GROUP returns the "next" sorted pulse
train, where "next" means the next to be determined by the Sorter, which may or may not be the next
in the sense of pulse times of arrival. If there are no more pulse trains (e.g., if the end of an input file
has been reached), GROUP returns NIL, equivalent in LISP to the empty list. SORT simply takes the
pulse trains returned by GROUP and accumulates them into a list to be returned upon detecting a NIL
result from GROUP. SORT is really just a convenient interface for the development of the the Sorter,
having nothing to do with the sorting process itself. In a practical implementation in which the Sorter
was embedded in a larger system, GROUP would serve as the interface to the Sorter:

(defun group () ; free: old-groups
(cond (old-groups I Y

(let ((grp (car old-groups)))
(setq old-groups (cdr old-groups))
grp))

((setq old-groups (groups)) (group))))

The function GROUP simply maintains a buffer of sorted pulse trains, OLD-GROUPS, feeding
pulse trains one at a time to the calling routine and calling on the function GROUPS to refill the buffer
when it becomes empty (NIL). Note that OLD-GROUPS serves here as a "static" variable, that is, one
whose value is preserved across successive calls to GROUP. This effect is achieved by having OLD-
GROUPS be a "nonlocal" variable or, in LISP parlance, be free with respect to GROUP. OLD-
GROUPS was initialized (bound) to NIL in SORT.

A comment is in order here on recursion. While recursion in many contexts can be quite efficient
in MACLISP (and frequently the most transparent way to express an algorithm), it is fairly inefficient
in the locally available implementation of PASCAL. Since the intent in this development was to
translate eventually to PASCAL, recursion was generally avoided in the Sorter. An exception was
made for the function GROUP (which calls itself in the last line), because it is called so few times
(relative to most routines in the Sorter) that the efficiency penalty is negligible. A side effect of the
general avoidance of recursion in the Sorter was to make much of the code longer and a bit more
obscure than it might otherwise have been. (Be warned, therefore, that nothing in the Sorter should be
assumed to represent generally good or desirable LISP programming style.)

The function GROUPS is where the real management of the sorting process takes place:

(defun groups () ; free: trains
(let ((out-trains nil))

(do ((pulse (get-pulse) (get-pulse)))
((or out-trains (not pulse))
(cond (out-trains

(put-pulse pulse))
(trains
(setq out-trains (decide trains))
(setq trains nil))))

(setq trains (update pulse trains))
(setq out-trains (output-aged pulse)))

out-trains))

GROUPS divides the sorting process into two parts. The first uses pulses as they are obtained to
update a list of hypothetically possible pulse trains being maintained in TRAINS. This is done using
the function UPDATE. The other major portion of the sorting process, performed by OUTPUT-AGED
and DECIDE, removes completed pulse trains from TRAINS for output. As will become evident when

6

NRL REPORT 8514

these functions are discussed, this is the more difficult task. The functions GET-PULSE and PUT-
PULSE are used to manage the input stream of pulses. The operation of GROUPS will now be
described.

After initializing the variable OUT-TRAINS to NIL, the function GROUPS enters a loop which
does the following: The next available pulse is obtained through a call to the function GET-PULSE
and stored in the variable PULSE. A test is made that will exit the loop if either PULSE is NIL, indi-
cating no more input pulses exist, or OUT-TRAINS is non-NIL, indicating that some pulse trains are
ready for output. Assuming for the moment that the test fails, the function UPDATE is called to use
PULSE to update the value of TRAINS. TRAINS is free with respect to GROUPS, and is the list of
possible not-yet-completed pulse trains. Once TRAINS has been updated, OUTPUT-AGED is called
to transfer to OUT-TRAINS any pulse trains in TRAINS which are complete. Of course, OUT-
TRAINS has the side effect of changing TRAINS accordingly. This loop is repeated until the exit test
is passed. At this time, if OUT-TRAINS is non-NIL, indicating that OUTPUT-AGED has indeed taken
some action, PUT-PULSE is called to return the pulse just acquired by GET-PULSE to the input
stream for later use. Of course the pulse is in reality buffered, but this is relevant only to GET-PULSE
and PUT-PULSE. GROUPS is then exited with OUT-TRAINS returned as its value. If OUT-TRAINS
was NIL following the exit test, the test must have passed due to a failure of GET-PULSE to return a
pulse, implying that the sort must be brought to an end. In this event DECIDE is called to make the
final choices as to which pulse trains in TRAINS are valid, putting them in OUT-TRAINS to be
returned as the value of GROUPS.

The version of GET-PULSE shown here returns the first element (in LISP called the CAR) of
the list PULSES while removing that same element from PULSES using CDR (the complement of
CAR) to obtain all but the first element of its argument:

(defun get-pulse ()
(let ((pulse (car pulses)))

(setq pulses (cdr pulses))
pulse))

Recall that PULSES was the argument to the function SORT. This is sufficient for algorithm develop-
ment, but like SORT itself, would not exist in the same form in a system operating on real data.

The function PUT-PULSE simply CONSes (mnemonic: CONS means construct) its argument
back onto the front of PULSES:

(defun put-pulse (pulse)
(setq pulses (cons pulse pulses)))

The function UPDATE uses its argument PULSE to construct a new list of possible pulse trains
from its argument TRAINS, returning the newly constructed list as its value:

(defun update (pulse trains)
(cond ((update-perfect pulse trains))

((cons (init-train pulse)
(update-ok pulse trains)))))

The task is divided into two parts. UPDATE-PERFECT is first called to add PULSE to any trains
in TRAINS where the new pulse is an "exact" fit in some sense. UPDATE-PERFECT doesn't actually
change TRAINS but returns the newly updated list as its value, which is then immediately returned as
the value of UPDATE. If PULSE is not an exact fit for any of the trains in TRAINS, UPDATE-
PERFECT returns NIL, and UPDATE responds by calling UPDATE-OK. UPDATE-OK is similar to

7

J.O. COLEMAN

UPDATE-PERFECT with two exceptions. First, a less perfect fit of PULSE to a train is required.
Second, when a fit is obtained, the associated train is "split," that is, the train becomes two trains which
are identical except that one contains the new PULSE and one does not. This, in effect, expresses the
notion that PULSE may belong with that train, but it may not; therefore both possibilities are retained.
The conflict will eventually have to be resolved by OUTPUT-AGED or DECIDE. If UPDATE-OK
finds no fit at all, it returns TRAINS unchanged. Since it is certainly true that if PULSE fit none of the
trains perfectly one possibility is that it is the begining of a new train, UPDATE adds one more train to
the list returned by UPDATE-OK before returning the list of trains as its value. That train is created
by INIT-TRAIN and consists of the single pulse PULSE.

This train-splitting action is really the heart of the Sorter and is where it differs most from other
pulse sorting algorithms. It is an attempt to prevent a wrong decision on a particular pulse from
becoming permanent. The obvious penalty is that the number oftrains being maintained at any one
time tends to be somewhat greater than the actual number of correct trains in existence at that time.
This leads to an obvious speed penalty. In addition, it might appear to those readers not familiar with
LISP that there would be both a heavy storage penalty and a further speed penalty from the duplication
of the existing portion of a train when the train is split. However, due to the way lists are implemented
in LISP (a similar implementation was used in the PASCAL translation), the existing train is not
copied at all but is represented in the new train by a pointer to the old train. Similarly, even though a
pulse may be part of several trains at any one time in the sorting process, the representation of the
pulses in the trains uses pointers. Thus, only one copy of the data representing the pulse actually
exists. While these data consist only of, time of arrival in this MACLISP version, in general many
parameters could be associated with each pulse. For a more thorough description of the representation
of lists (and other objects) in LISP, see Ref. 3, chapter 9.

The function UPDATE-PERFECT checks first for the prior existence of pulse trains:

(defun update-perfect (pulse'trains)
(cond ((not trains)

(list (init-train pulse)))
((do ((this-train (car trains)

(car rem-trains))
(rem-trains (cdr trains) (cdr rem-trains))
(any-perfect nil (or any-perfect fitted))
(up-trains nil

(cons (cond (fitted)
(this-train))

up-trains))
(fitted))
((not this-train)
(cond (any-perfect up-trains) (nil)))

(setq fitted
(perfect-fit pulse this-train))))))

If there are no existing trains, indicated by a value of NIL for TRAINS, a new pulse train is con-
structed of the single pulse PULSE, and the new train is made the only element of a list and returned
as the value of the function. In the more common situation, in which TRAINS is not an empty list,
UPDATE-PERFECT enters a loop which calls PERFECT-FIT on each train in TRAINS in succession
to test for the possibility that PULSE belongs with that train. If PERFECT-FIT returns NIL, the train
is put unchanged into the output list UP-TRAINS. If a fit is recognized, PERFECT-FIT will return the
updated train, which is then substituted for the original train in UP-TRAINS. The variable ANY-
PERFECT is used to detect the situation in which PERFECT-FIT returns NIL for all of the trains in
TRAINS. In this case UPDATE-PERFECT returns NIL, otherwise it returns UPDATE-TRAINS.

8

NRL REPORT 8514

The PERFECT-FIT function shown here is suitable for algorithm development on simple pulse
sequences (i.e., with integer times):

(defun perfect-fit (pulse train)
(cond ((> 2 (nr-pulses train))

nil)
((eq (toa pulse)

(- (* 2 (toa (latest-pulse train)))
(toa (next-latest-pulse train))))

(add-pulse pulse train))))

This function indicates a fit if and only if the train contains at least two pulses and the difference
between the times of the last two pulses is exactly equal to the difference between the time of the last
pulse and the new pulse under consideration, PULSE. This is obviously not suitable for use with real
data where times are measured with finite accuracy, and therefore this function's operation was changed
somewhat in the PASCAL translation. The details are described in comments in the PASCAL listing of
the function.

The only function in the Sorter embodying any knowledge of the (rather trivial) representation of
a pulse is TOA, which returns a pulse's time of arrival:

(defun toa (pulse)
pulse)

Here are five short functions which exist only to isolate the functions that use them from the
details of the representation of pulse trains:*

(defun init-train (pulse)
(list pulse))

(defun add-pulse (pulse train)
(cons pulse train))

(defun nr-pulses (train)
(length train))

(defun next-latest-pulse (train)
(car (cdr train)))

(defun latest-pulse (train)
(car train))

INIT-TRAIN simply creates a list containing only the single PULSE given as its argument.
ADD-PULSE uses CONS (a LISP primitive) to create a new list consisting of PULSE followed by the
elements of TRAIN. NR-PULSES returns the number of pulses in the train which is its argument.
LATEST-PULSE returns the pulse in its argument with the latest time of arrival. Similarly, NEXT-
LATEST-PULSE returns the pulse in its argument with the second latest time of arrival. Besides these
five, the only other function in the Sorter which embodies any knowledge of the representation of a
train is TRAIN-MINUS (to be discussed later).

*Clearly these are so trivial (as is TOA) that simple macro definitions would suffice. This was in fact done in the PASCAL trans-
lation. The functional form was kept here to simplify the presentation.

9

J.O. COLEMAN

The operation of UPDATE-OK is similar to the operation of UPDATE-PERFECT (as described
earlier):

(defun update-ok (pulse trains)
(cond ((not trains)

(list (init-train pulse)))
((do ((this-train (car trains)

(car rem-trains))
(rem-trains (cdr trains) (cdr rem-trains))
(up-trains trains

(cond (fitted (cons fitted
up-trains))

(up-trains)))
(fitted))
((not this-train) up-trains)
(setq fitted (fits-ok pulse this-train))))))

The differences are: First, FITS-OK is used as the test rather than PERFECT-FIT. In addition, since
all of the original trains must be returned regardless of whether any fit is detected, UP-TRAINS is ini-
tialized to TRAINS at the beginning of the loop rather than to NIL. From then on, UP-TRAINS is
only modified when necessary (as determined by FITS-OK) to add the new train which results when a
train is split. UP-TRAINS is always returned as the value of UPDATE-OK when the loop is exited.

In this version of FITS-OK a fit is detected only for the case of a train consisting of a single pulse,
since any second pulse certainly suffices to create a hypothetically possible train:

(defun fits-ok (pulse train)
(cond ((greaterp 2 (nr-pulses train))

(add-pulse pulse train))))

If a fit is detected, the value returned is the train with the new pulse added. For operation on real
data it would be appropriate to extend this criterion for detecting a fit. This was done in the PASCAL
translation and is described in comments in the PASCAL listing of the function.

The function OUTPUT-AGED (called from GROUPS) is responsible for finding and removing
trains from TRAINS which have become old. A train is old when there is no possibility that it will be
updated further. (See the function OLD, described later.) The basic assumption is that an old train is
complete and should be output. However, since a given pulse may have appeared in more than one
train in TRAINS, and since designating a train for output implies that the proper train has been found
for those pulses, OUTPUT-AGED must insure that any pulses in trains designated for output do not
appear in TRAINS, and vice-versa. This turns out to be the major part of the work required of
OUTPUT-AGED:

(defun output-aged (pulse) ; free: trains
(let ((time (toa pulse))

(out-trains nil))

;; Split off old trains:
(do ((this (car trains) (car rem))

(rem (cdr trains) (cdr rem)))
((not this))
(cond ((old this)

(setq trains (delq this trains))
(setq out-trains

(cons (append this nil) out-trains)))))

10

NRL REPORT 8514

;; Conflict resolution between TRAINS and OUT-TRAINS:
;; thin out...
(do ((this-old (car out-trains) (car rem))

(rem (cdr out-trains) (cdr rem))
(thin-old nil (cond (this-old

(cons this-old
thin-old))

(thin-old))))
((not this-old) (setq out-trains thin-old))
;; ... old trains:
(do ((this-train (car trains)

(car rem-trains))
(rem-trains (cdr trains)

(cdr rem-trains)))
((or (not this-train) (not this-old)))
(cond ((not (> (qual-train this-old)

(qual-train this-train)))
(setq this-old

(train-minus this-old
this-train)))))

(setq trains
;;...current trains
(remove-pulses this-old

trains)))
;; Conflict resolution within TRAINS:
(decide out-trains)))

The detailed operation of OUTPUT-AGED can be described as a sequence of four operations:

Initialization. The variable TIME, used later by the function OLD, is set to the time of arrival
of PULSE, the argument to OUTPUT-AGED. The variable OUT-TRAINS, used to accumulate
trains for output, is initialized to the empty list.

Splitting off old trains. A loop calls the function OLD on each train in TRAINS. Old trains, in-
dicated by a non-NIL result from OLD, are deleted from TRAINS and added to OUT-
TRAINS.*

Conflict resolution between TRAINS and OUT-TRAINS. It is here that pulses are restricted to
appearing in either TRAINS or OUT-TRAINS but not both. The code to accomplish this
makes up the bulk of the function and will be discussed in detail later.

Conflict resolution within OUT-TRAINS. Here pulses appearing in OUT-TRAINS are restricted
to appearing in only one train. This is accomplished using the function DECIDEt whose
result is returned as the result of OUTPUT-AGED.

*Since, due to the way the updating process operates, trains in TRAINS may in general have common subtrains, APPEND is
used to make sure that it is actually a copy of each old train that is added to OUT-TRAINS. This will prevent certain later pulse
deletions from having the undesirable side effects of also deleting pulses from trains sharing the same subtrain. The places where
this is important will be noted when that part of the code is discussed.
tThe fact that OUT-TRAINS at this point contains only copies is not important, because DECIDE takes its own precautions
against deletion side effects.

11

JO. COLEMAN

Conflict resolution between TRAINS and OUT-TRAINS proceeds as follows: A nested loop
arrangement is used to compare the relative quality, as determined by the function QUAL-TRAIN, of
each train in OUT-TRAINS with each train in TRAINS. On each such comparison, if the train from
TRAINS is determined to be the superior, the function TRAIN-MINUS is used to remove any pulses
the two trains have in common from the train in OUT-TRAINS.* Of course, if all of the pulses are
removed from a train in this fashion, the train itself is removed. This assures. the eventual removal of
the superfluous train created in the train-splitting performed by UPDATE-OK. The key to this process
is the nature of the function QUAL-TRAIN. While a simple function was used in this development, a
good deal of power could be added to the Sorter by using a better train-rating strategy in this function.

The conflict-resolution process must then remove any pulses which are left in OUT-TRAINS from
TRAINS.t This is done with the function REMOVE-PULSES.t After this step the set of pulses in
OUT-TRAINS and the set of pulses in TRAINS are mutually exclusive.

The function OLD determines whether a particular train has become old by comparing TIME, set
in OUTPUT-AGED to the time of the last pulse used, to a threshold computed from the train:

(defun old (train) ; non-local: time, max-pri
(cond ((> time

(cond ((eq 1 (nr-pulses train))
(+ max-pri (toa (latest-pulse train))))
((- (* 2 (toa (latest-pulse train)))

(toa (next-latest-pulse train)))))))))

For trains of two or more pulses this threshold is simply the expected time of the next pulse in
the train calculated by extrapolating from the two latest pulses. (A small addition to this threshold
would be necessary for operation with real data consisting of imperfect measurements.) For trains of a
single pulse the threshold is set at the pulse time plus MAX-PRI, a constant set in SORT.

For development purposes, QUAL-TRAIN simply looked at the number of pulses in the train and
assigned a quality factor equal to one for trains of one pulse, two for trains of two pulses, and three for
all other trains:

(defun qual-train (train)
(let ((l (nr-pulses train)))

(cond ((< 1 4) 1)

(3))))
Other factors which could be used in a more sophisticated version of QUAL-TRAIN include the

total time period spanned by the train and the number of missing pulses in the train.§

TRAIN-MINUS and REMOVE-PULSES are really utility functions whose operation is not related
to the sorting process; therefore, only a brief description of each is given. TRAIN-MINUS returns its
first argument after removing any pulses the first and second arguments may have in common:**

*It is important that TRAIN-MINUS is operating on a copy of the original old train, rather than on the original train itself, since
TRAIN-MINUS (as will be seen later) uses DELQ to remove pulses from its first argument.
tThis is actually accomplished within the outermost of the nested loops mentioned earlier.
*Again, the fact that the trains in OUT-TRAINS are actually copies of the trains that appeared in TRAINS is important, because
REMOVE-PULSES uses TRAIN-MINUS, which uses DELQ.
§Recall that OUTPUT-AGED occasionally removes pulses from trains. In addition, a more sophisticated version of FITS-OK
might allow UPDATE-OK to update a train when there is a missing pulse.
**TRAIN-MINUS obviously must incorporate knowledge of the structure of a train.

12

NRL REPORT 8514

(defun train-minus (a b)
(cond((not a) nil)

((do ((this-b (car b) (car rem-b))
(rem-b (cdr b) (cdr rem-b))
(up-a a (delq this-b up-a)))

((not this-b) up-a)))))

In REMOVE-PULSES the variables have been named to suggest its application in the function
DECIDE (to be discussed later). REMOVE-PULSES returns its second argument, a list of trains, after
removing all occurrences of pulses common to its first argument, a train.*

(defun remove-pulses (best-train trains)
(do ((this-train (car trains) (car rem-trains))

(rem-trains (cdr trains) (cdr rem-trains))
(up-trains ()

(let ((stripped
(train-minus this-train

best-train)))
(cond ((and stripped

(not
(memq stripped

up-trains)))
(cons stripped

up-trains))
(up-trains)))))

((not this-train) up-trains)))

The function DECIDE takes as its argument a list of trains, and it returns a list of trains contain-
ing mutually exclusive sets of pulses; that is, it resolves the conflicts among the trains. It does this by
first initializing REM-TRAINS to the train list and then entering a loop which repeatedly does the fol-
lowing:

1. It finds the "best" train in REM-TRAINS, using the function BEST, and assigns it to the
variable BEST-TRAINt

2. Using REMOVE-PULSES, it removes from all other trains any pulses which they have in
common with BEST-TRAIN. This has the beneficial side effect of removing BEST-
TRAIN from REM-TRAINS.

3. It accumulates BEST-TRAIN in a list of trains for output, DEC-TRAIN (initially empty).

The loop terminates when REM-TRAINS becomes empty. At this point DEC-TRAINS contains trains
with mutually exclusive sets of pulses, and therefore it can be returned as the result of DECIDE:

(defun decide (trains)
(do ((rem-trains trains

(remove-pulses best-train
rem-trains))

(dec-trains nil (cons best-train dec-trains))
(best-train))

((not rem-trains)
dec-trains)
(setq best-train (append (best rem-trains) nil))))

*Contrary to first appearances, REMOVE-PULSES contains no knowledge of the structure of a train. All such knowledge needed
by REMOVE-PULSES is contained within the call to TRAIN-MINUS.
tSince REMOVE-PULSES (which uses TRAIN-MINUS, which in turn uses DELQ) will be used to resolve the conflicts, the
train is actually copied with APPEND before assignment to prevent accidents.

13

J.O. COLEMAN

The function BEST finds the "best" train in its argument TRAINS by simply making a pass
through TRAINS keeping track of the best train seen so far:

(defun best (trains)
(do ((this-train (car trains) (car rem-trains))

(rem-trains (cdr trains) (cdr rem-trains))
(best-tr nil (better-of best-tr this-train)))
((not this-train) best-tr)))

The comparison between trains is done with the function BETTER-OF:

(defun better-of (trainl train2)
(let ((ni (nr-pulses trainl))

(n2 (nr-pulses train2)))
(cond ((> n1 n2) trainl)

((> n2 n1) train2)
(t traini))))

BETTER-OF bases its judgment strictly on the numbers of pulses in the two trains, returning the
longer. A better version might use the same kinds of train parameters discussed earlier with respect to
QUAL-TRAIN.

In some sense BETTER-OF and QUAL-TRAIN are redundant, and one function could probably
be designed to serve both purposes. With the very simple length-based discriminant used here, how-
ever, they have -slightly different requirements. BETTER-OF is tasked with always indicating the best
train,, even when the differences in "quality" are slight. The two arguments are exactly interchangeable.
QUAL-TRAIN, although a function of one argument, certainly could have been written as a function
of two arguments by including the comparison now performed in OUTPUT-AGED. Those two argu-
ments are not interchangeable, however. One is an old train on the verge of being output. The other is
a current train which will be kept in the system for further updating. QUAL-TRAIN must indicate that
the current train is superior to the old train only when there is a clear preference. In other words, since
it is generally desirable that an old train be output intact whenever possible, it is given the benefit of
the doubt in the comparison.

This completes the description of the Sorter. Appendix A gives the definitions of some functions
used for testing, and Appendix B gives some examples showing the details of how some typical sorts
develop.

PERFORMANCE OF THE PASCAL VERSION

The experimental data used to test the PASCAL version of the Sorter, referred to just as the
"Sorter" for the remainder of this section, originated in an experiment conducted at NRL's Chesapeake
Bay Detachment (CBD). A receiver monitoring a band of frequencies in the 9-GHz region was set up
to record certain data on magnetic tape for each pulse received, including time of arrival to the nearest
microsecond. A test aircraft was flown carrying a radar transmitter with known characteristics. The
data collected consisted of numerous pulse trains both from the test aircraft and from numerous "tar-
gets of opportunity," consisting mostly of small surface search radars belonging to vessels on the Chesa-
peake Bay.

When the trains output by the Sorter were printed for examination, it was found that most trains
were sorted perfectly. (The Sorter, as shown in Appendix C, outputs only statistical summaries of each
train. Versions used in this early testing printed out each sorted train in detail, showing each pulse.)

14

NRL REPORT 8514

No instances of a pulse from one train being put into another by the Sorter were noted. The errors
made by the Sorter involved showing what was actually one train as two or more trains. For example,
if the pulses in a train are considered as numbered chronologically, the Sorter might typically put the
odd-numbered pulses into one train and the even-numbered pulses into another. Upon close examina-
tion of the times associated with the pulses, the trains that were being split in this fashion usually had
pulse repetition intervals that alternated between two slightly different values. Other instances of split-
ting occurred in which there was less structure in the resulting split. In these cases the actual trains
usually had interpulse intervals that were not very stable and showed no particular pattern. Perhaps
some adjustment to PERFECT-FIT or FITS-OK could improve the sorting in these circumstances. For
our purposes it was not worth pursuing.

Statistical information on the operation of the Sorter was gathered on one particular run. The
results are shown in Table 2. The quantity "average number of trains in the system" refers to the
number of trains in the variable TRAINS at the time a new pulse is obtained from GET-PULSE. This
quantity, together with the item "fraction of pulses not a perfect fit," indicates that the burden imposed
by the splitting of trains is not excessive.

Table 2 - Typical Sorter Performance

Duration of data collection 10 min

Number of pulses sorted 3264

Number of different transmitters present 2

Fraction of pulses not a perfect fit 18 %

Average number of trains in the system 4.9

Average number of pulses per sorted train 10.7

Total pulse data storage used 1300 bytes

Total list storage used 10540 bytes

Approximate ASC CP time to sort 35.8 s

SUMMARY

A program which does PRF sorting using list processing techniques has been described. The
detailed discussion of the operation of the program was based on a LISP implementation that functions
on a demonstration level. A PASCAL version capable of operation on real data is given in an appen-
dix. The operation of the PASCAL version parallels the operation of the LISP version except as
described in comments in the PASCAL listing.

A unique feature of the operation of this particular sorting algorithm is the ability to postpone a
decision about whether a pulse should be assigned to a particular pulse train by duplicating or splitting
the train and assigning the pulse to one of the two resulting pulse trains. The particular type of list
structure used to represent pulse trains, native to LISP, prevents the splitting from resulting in unrea-
sonable storage requirements. The necessary list-manipulation facilities have been duplicated in the
PASCAL version.

15

J.O. COLEMAN

REFERENCES

1. G.L. Steele, Jr., and G.J. Sussman, "Design of a LISP-Based Microprocessor," Commun. ACM 23
(11), 628-645 (Nov. 1980).

2. G.J. Sussman, J. Holloway, G.L. Steele, Jr., and A. Bell, "Scheme-79-Lisp on a Chip," Computer
14 (7), 10-21 (July 1981).

3. P.H. Winston, and B.K.P. Horn, LISP, Addison-Wesley, Reading, Mass., 1981.

4. L. Siklossy, Let's Talk LISP, Prentice-Hall, Englewood Cliffs, N.J., 1976.

5. P.H. Winston, Artificial Intelligence, Addison-Wesley, Reading, Mass., 1977.

6. Jon L. White, File MC:LISP;LISP NEWS on the MACSYMA Consortium PDP-10 at Mas-
sachusetts Institute of Technology, Cambridge, Mass., Jan. 27, 1979.

7. D.A. Moon, MACLISP Reference Manual, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, Mass., Mar. 6, 1976.

16

Appendix A
SOME FUNCTIONS TO SUPPORT SORTER TESTING

,;; First change some details of the LISP environment:

(*nopoint t) ; no decimal point on integer output

(sstatus feature noldmsg) ; no message on autoloading

(setq prinl 'sprinl) ; causes LISP output to be "prettyprinted"

(setq base 10.) ; set default radix for numerical I/O to 10

(setq ibase 10.)

;;; The testing functions:

(defun train (start pri n)
(cond ((equal 0. n) nil)

(t (cons start
(train (+ start pri) pri (subi n))))))

(defun trains (specs)
(cond ((not (cdr specs))

(apply 'train (car specs)))
(t (merge2 (apply 'train (car specs))

(trains (cdr specs))))))

(defun merge2 (listl list2)
(cond ((not list2) listl)

((not listl) list2)
((lessp (car listl) (car list2))
(cons (car listl)

(merge2 (cdr listl) list2)))
(t (cons (car list2)

(merge2 list1 (cdr list2))))))

(defun details (pulses)
(trace ((sort put-pulse) arg)

((get-pulse update groups) value))
(let ((out (sort pulses)))

(untrace)
out))

17

Appendix B
EXAMPLES OF THE SORT PROCESS

Two examples of the sort process are shown below. The function DETAILS (Appendix A) is
used to set up a trace prior to invoking SORT. The trace shows the arguments to SORT and PUT-
PULSE and the values returned by GET-PULSE, UPDATE, and GROUPS. The final result of the sort
follows the end of the trace. First, a simple example:

(details (train 1 5 5))

(1 ENTER SORT ((1 6 11 16 21)))

(1 EXIT GET-PULSE 1)

(1 EXIT UPDATE ((1)))
(1 EXIT GET-PULSE 6)
(1 EXIT UPDATE ((6) (6 1) (1)))
(1 EXIT GET-PULSE 11)
(1 EXIT UPDATE ((1) (11 6 1) (6)))
(1 EXIT GET-PULSE 16)
(1 EXIT UPDATE ((16 11 6 1) (6)))
(1 EXIT GET-PULSE 21)
(1 EXIT UPDATE ((21 16 11 6 1)))
(1 EXIT GET-PULSE NIL)

(1 EXIT GROUPS ((21 16 11 6 1)))
(1 EXIT GET-PULSE NIL)

(1 EXIT GROUPS NIL)
((21 16 11 6 1))

The example just given is not very interesting because there is no possible doubt about what the
desired outcome is. The following example calls SORT with a sequence of pulses that can be separated
into trains in several reasonable ways:

(details (trains '((1 5 4) (2 5 5) (13 3 6))))

(1 ENTER SORT ((1 2 6 7 11 12
(1 EXIT GET-PULSE 1)
(1 EXIT UPDATE ((1)))
(1 EXIT GET-PULSE 2)
(1 EXIT UPDATE ((2) (2 1)
(1 EXIT GET-PULSE 6)
(1 EXIT UPDATE ((6) (6 1)
(1 EXIT GET-PULSE 7)
(1 EXIT UPDATE ((7) (7 6)
(1 EXIT GET-PULSE 11)
(1 EXIT UPDATE ((6) (11 6
(1 EXIT GET-PULSE 12)
(1 EXIT UPDATE ((7) (12 7
(1 EXIT GET-PULSE 13)
(1 EXIT UPDATE ((6) (11 6
(1 EXIT GET-PULSE 16)
(1 EXIT UPDATE ((7) (12 7
(1 EXIT GET-PULSE 16)

13 16 16 17 19 22 22 25 28)))

(1)))

(6 2) (2) (2 1) (1)))

(7 2) (7 1) (1) (2) (6 2) (6 1) (6)))

1) (6 2) (2) (1) (7 1) (7 2) (7 6) (7)))

(7 1) (11 6 1) (6)))

(13 7 1) (12 7 2) (7)))

(13 7 1) (16 11 6 1) (6)))

18

NRL REPORT 8514

(1 EXIT UPDATE ((16) (12 7 2) (13 7 1) (16 11 6 1)))
(1 EXIT GET-PULSE 17)
(1 EXIT UPDATE ((16 11 6 1) (13 7 1) (17 12 7 2) (16)))
(1 EXIT GET-PULSE 19)
(1 EXIT UPDATE ((16) (17 12 7 2) (19 13 7 1) (16 11 6 1)))
(1 EXIT GET-PULSE 22)
(1 EXIT UPDATE ((16 11 6 1) (19 13 7 1) (22 17 12 7 2) (16)))
(1 EXIT GET-PULSE 22)
(1 ENTER PUT-PULSE (22))

(1 EXIT GROUPS ((16 11 6)))
(1 EXIT GET-PULSE 22)
(1 EXIT UPDATE ((22) (22 17 12 7 2) (19 13 7 1)))
(1 EXIT GET-PULSE 25)
(1 EXIT UPDATE ((25 19 13 7 1) (22 17 12 7 2) (22)))
(1 EXIT GET-PULSE 28)
(1 EXIT UPDATE ((28) (28 22) (25 19 13 7 1) (22 17 12 7 2) (22)))
(1 EXIT GET-PULSE NIL)
(1 ENTER PUT-PULSE (NIL))

(1 EXIT GROUPS ((22 17 12 2)))
(1 EXIT GET-PULSE NIL)

(1 EXIT GROUPS ((28) (25 19 13 7 1)))
(1 EXIT GET-PULSE NIL)

(1 EXIT GROUPS NIL)
((25 19 13 7 1) (28) (22 17 12 2) (16 11 6))

19

Appendix C
PASCAL VERSION OF THE SORTER

PASCAL PROGRAM

program lisp(input, output, summarys);

{ PRFSORT

vers 1.7,
operational 1/15/81,
last mod 3/13/81, Friday
language: PDL2, an extended dialect of PASCAL,
J. 0. Coleman, NRL Code 5312 }

{ Vers 1.7.1 differs from 1.7 only in that the comment describing the
modifications associated with different versions has been deleted
and this comment substituted in its place. }

{ INPUT control file:

The first line of the input file should contain an integer
representing the maximum number of pulses to be sorted. This
quantity defaults to 5000 if no input file is present. . The
remainder of the input file, if present, restricts the sort by
specifying bounds in time, bearing, and amplitude. A pulse must
fall within all three bounds simultaneously to be forwarded to the
Sorter. A set of bounds consists of two input lines, the first
giving lower bounds, and the second giving upper bounds. Each
line contains three numbers: time in microseconds (integer 0 to
2047999999), bearing in degrees (real 0.0 to 360.0), and
amplitude in volts (real 0.0 to 5.0). The inputs are not checked
for validity. Time is measured from the most recent multiple of
2,048,000,000 microseconds past the hour. This quantity is 34
minutes, 8 seconds. This effectively divides each clock hour into
two windows, each of which has its own sets of bounds. A blank
line is used to precede the first set and to separate successive
sets of bounds in the input file. A line with the letter c in
column 1 in place of a set of bounds signals the switch to the
next time window. Sets of bounds should not overlap in time. If
data exist beyond the last set of bounds, all of that data will be
accepted.

As an example, suppose the file DATA contains data from times
ranging from 12:30:00 to 1:05:00. The input file might look like

/ start acnm=input
1000000

0 50.0 0.0
2047999999 130.0 5.0

c

0 50.0 4.0
60000000 130.0 5.0

20

NRL REPORT 8514

120000000 50.0 4.0
180000000 130.0 5.0

c
/ stop

In this example a maximum of one million pulses will be accepted.
Bounds are put on all data from times prior to 1:00:00. All
pulses from after 1:00:00 are accepted by default, since bounds
are given for only two of three windows. (Note that an empty file
would accept all data by default.) Prior to 1:00:00 data is
accepted only if it has bearing between 50 and 130 degrees. In
the second window data is accepted only in the first and third
minutes, and then only if it also has amplitude of between 4 and 5
volts.

Note that real quantities must have a decimal and at least one
digit on each side of the decimal. Integers must have no decimal.
Placement on the line is unimportant, except that numbers must be
separated by at least one space. The blank lines need not in fact
be blank, as they will be ignored. They can be used for comments.
The area to the right of the space to the right of the last used
number on each line is similarly ignored, as is the remainder of
the line following the c in column 1.

}

const max trainlength = 50 ; { used in OLD }
max output line = 80 ; { used in PRINTF }
defaultmaxpulses = 5000 ; { used in SORT }

{ units of microseconds: }
maxpri = 10000 ; { used in OLD }
jitter small = 5 ; { used in PERFECT-FIT }
jitterlarge = 15 ; { used in OLD }

pi = 3.14159 ;

maxmicroseconds = maxint
toacycle = 2048000000 ;
hourcycle = (3600 - 2048) * 1000000

type radians = real
volts = real
microseconds = integer

summary = record
n : integer
time : record

earliest,
latest : microseconds

end
pri,
bearing,
amplitude : record

case { accumulating } boolean of
true :

(sum,
21

J.O. COLEMAN

sumsq : real)
false

(mu,
sigma : real)

end
end

{1111111111 lisp kernel 1111111111 }

s5exp = s_exprec

s exprec = record
ref count : integer
atomic : boolean
case boolean of
{ selector corresponds to field atomic

except for nil_
true

(

uuuuuuuuuu user specified atomic field list: uuuuuuuuuu

toa_ : microseconds
bearing : radians
amplitude : volts

1111111111 more lisp kernel: 1111111111 }

);
false
(cdr : 5_exp
case { deallocating } boolean of

true : (previous : s exp
the car : boolean)

false :(car : sexp))
end

var garbage : record
lists, { ref count not maintained

in garbage.lists I
atomic : 5_exp

end
consescreated,
atomscreated : integer
t, nil_ , setqtemp : s_exp

{ uuuuuuuuuu user global variables: uuuuuuuuuu I

lastcycle : (at_34_08, athour) ; { see cycle, summarize }
dummy, from-file : s exp ;

{ 1111111111 more lisp kernel: 1111111111 }

{ The following discussion applies ONLY to variables
of type SEXP.

22

NRL REPORT 8514

Reference count maintainance:

Except for the circumstances described
immediately below, all assignments to variables
should be made with SETQ, not := .

With the exception of kernel routines optimized
for speed, every function or procedure parameter
should have REF called on it at the beginning of
the body. Every local variable should be
intialized to NIL_ (:= ,not SETQ) at the beginning
of the body. For functions a local variable should
be used to hold the function value until the end of
the body. At the end of the body, the function
value should be assigned to the function name (:=
, not SETQ). Following that, DEREF should be
called on each of the parameters and each of the
local variables, with the exception of the local
that held the function value at the time it was
assigned to the function name. TEMP REF should be
called on that local as the last executable code in
the body. }

macro ref(a)

deref(a

= " if a <> nil then
with a ^ do

refcount := ref count + 1 "
) = " if a <> nil then

with a -- do
begin
ref count := ref count - 1
if ref count <= O then

{ non-std PASCAL use of with: }
deallocate(a)

end " ;

tempref(a) = " if a <> nil then
with a '-do

refcount := ref-count - 1 " ;

setq(a, b) = " begin
setqtemp := b ;
ref(setq temp) ;
deref(a T ;
a := setqtemp
end " ;

{ The CAR/CDR family of macros should be called only
with variable (not general expression) arguments.
If they need to be used with more general arguments
(say, a function call), they should be rewritten as
functions. }

car(a) = " a ^. car_ " ;

cdr(a) = "' a ^. cdr_ " ;

23

J.O. COLEMAN

caar(a) = " car(car(a)) "
cdar(a) = " cdr(car(a)) "

cadr(a) = " car(cdr(a)) "
cadar(a) = " car(cdr(car(a)))

{ uuuuuuuuuu user macros uuuuuuuuuu }

{ TOA should be called only on arguments which are
variables or combinations of car and cdr of variables.

toa(pulse)-= " pulse ^. toa "

init train(pulse) = " cons(pulse, nil_) "

add pulse(pulse, train) = " cons(pulse, train)

nrpulses(train) = " length(train) "

latestpulse(train) = " car(train) "

nextlatestpulse(train) = " cadr(train) "

1111111111 more lisp kernel: 1111111111

function cons(a, d s_exp) s exp
var out : s exp

begin { cons }
{ get a cons in OUT: }
if garbage.lists = nil_ then

begin
new(out, false)
out ^. atomic := false
conses created := conses created + 1
end

else
begin { see macro FREECONS in DEALLOCATE }
out := garbage.lists ;
garbage.lists := garbage.lists ^. previous
end

ref(a)
ref(d)
with out do

begin
car_ := a ;
cdr_ := d ;

ref-count := 0 { fn values returned are tempref }
end ;

cons := out
end ; { cons }

function stack-length(1 : s exp) : integer

24

NRL REPORT 8514

var n : integer

begin { stacklength }
n := 0
while 1 <> nil do

begin
n :=n + 1
1 := 1 ^. previous
end ;

stacklength := n
end ; { stack-length }

procedure deallocate(current : sexp)

label 1, 2, 3, 4

const done = nil ; { UNIQUE empty-stack marker

var from, { linked stack of values of CURRENT with each
stacked cons containing the associated
"return address" flag in the field THECAR }

next : sexp ; { temporary }

macro start = "1"1;
done car = "2" ;
done-cdr = "3" ;

pop_stack = "14" ;

{ mnemonics for labels }

traversesub(field, field is car_) =
begin
assert not current ^. atomic
next := current ^. field ; { this next i
if next <> nil then { to this

with next ^do
begin
ref count := ref count - 1
if ref count <= O then

begin { switch to TRUE variant
of non-atomic s exprec

s local }
macro }

witn current do
begin
thecar := fieldiscar_
previous := from
end ;

{ note PREVIOUS is defined as the
first of car_ or cdr_ traversed }

from := current
current := next
goto start
end

end
end " ;

free-atom(a) = "
begin

25

J.O. COLEMAN

next := cons(a, garbage.atomic)
assert next a. refcount = 0
next ^. ref count := 1 ;
if garbage.atomic K> nil_ then

with garbage.atomic ^ do
ref count := ref count - 1

garbage.atomic := next
end "

free-cons(c) =
begin
c '. previous := garbage.lists

{ note PREVIOUS must represent
same field in function CONS

garbage.lists := c
end " ;

{ This procedure is equivalent to the following recursive version,
differing only in that the recursion is removed by using a stack
embedded in the structure being deallocated:

begin
if current ^. atomic then

freeatom(current)
else

begin
deref (current ^. car_)
deref (current ^. cdr_)
free cons(current)
end

end

begin { deallocate }

from := done ; { initialize stack

start:
assert current K> nil
assert current a refcount <= 0

if current ^. atomic then
begin
freeatom(current)
goto popstack
end ;

traverse-sub(car-, true)
done car:

{-assert finished with subtree current ^. car_

traversesub(cdr_, false)

done cdr:
{ assert finished with both subtrees }

assert current a. ref-count <= 0
26

NRL REPORT 8514

assert not current a atomic
freecons(current)

pop-stack:
{ assert current is deallocated

if from K> done then
begin
current := from
from := from ^. previous
if current ^. thecar then

goto done-car
else

goto donecdr
end

end ; { deallocate }

function length(1 : sexp) :integer
var len : integer

this : sexp
begin { length }

ref(1)
len := 0
this := 1
while this K> nil_ do

begin
len := len + 1
this := cdr(this)
end

length := len
deref(1)
end ; { length }

function getatom : s_exp
var out : s_exp

begin { getatom I

out := nil_ ;
if garbage.atomic = nil_ then

begin
new(out, true)
out ^. atomic := true
out ^ refcount := 1

atomscreated := atoms-created + 1
end

else
begin { see macro FREEATOM in DEALLOCATE
setq(out, car(garbage.atomic)) ;
setq(garbage.atomic, cdr(garbage.atomic))
end ;

getatom := out
tempref(out)
end , { get-atom }

27

J.O. COLEMAN

function append(x, y : s exp) : sexp

{ Derived from the original recursive version shown following
this function. A proof of correctness has been carried out.

var last, stack, temp : s exp

macro empty = "nil " ; { unique flag
{ must be valid 2nd arg to CONS

begin { append }

if x = nil_ then
append := y

else
begin
assert not x ^. atomic
ref(x) ;

stack := empty
temp := x

repeat
stack := cons(car(temp), stack)
temp := cdr(temp)

until temp = nil_

ref(y) ;
with stack do

begin { new use of TEMP
temp := cdr_
cdr := y ;

if Temp K> empty then
begin
refcount := 1
repeat

last := stack
stack := temp
temp := cdr(stack)
stack a cdr := last

until temp = empty
stack a. refcount := 0
end ;

append := stack
end

deref(x)
end

end ; { append }

{ the recursive version used previously is
function append(x, y : s exp) : s exp

var temp : s_exp
begin
ref(x)
ref(y)
temp := nil_
if x = nil then

setqT temp, y)
else

28

NRL REPORT 8514

setq(temp, cons(car(x), append(cdr(x), y)))
append := temp
deref(x)
deref(y)
tempref(temp)
end

}

function delq(x, y : s_exp) : s exp
var out, this, last : s exp
begin { delq }

ref(x)
ref(y)
out := y

if y K> nil_ then
begin
assert not y ^. atomic
with y do

if x = car then
out .= cdr:

else
begin
this := cdr_
last := y ;
while this K> nil do

with this do
if x = car then

begin
this := cdr
ref(this) ; { 3 lines like setq
deref(cdr(last)) ; -
last a cdr_ := this
end

else
begin
last := this
this := cdr
end

end
end

ref(out)
deref(x)
deref(y)
tempref(out)
delq := out
end ; { delq }

function memq(x, y : s exp) : sexp
label 1;

var temp, out : s_exp
macro exit = "1" ; { mnemonic

begin { memq I
ref(x)
ref(y)
out := nil_

29

J.O. COLEMAN

temp := y ;
while temp <> nil_ do

with temp ^ do
if car = x then

begin
ref(temp);
out := temp
goto exit
end

else
temp := cdr_

exit:
memq := out
deref(x)
deref(y)
tempref(out)
end , { memq}

function reverse(1 : s_exp) : s exp
var out : s_exp

begin { reverse }

ref(1);
out := nil_
if 1 K> nil_ then

setq(out, append(reverse(cdr(1)),
cons(car(1), nil)))

reverse := out
deref(1);
tempref(out)
end ; { reverse }

function printf(obj : s exp) : s_exp

{ PRINTF passes its argument along as its
value, printing it along the way. }

var linelength : O..maxoutputline

procedure newline ;
begin { newline }

writeln
write(')
line length := 0
end ; { newline }

procedure stringout(string : packed array[O..?]of char)
var stringlength : O..max outputline
begin
string length := ub(string,1) - lb(string,1) + 1
if line length + stringlength > maxoutput line then

newline;
write(string)
line length := line length + stringlength
end , { stringout T

30

NRL REPORT 8514

procedure realnrout(realnr : real ; width, dec : integer) ;
begin
if line length + width > maxoutput line then

newline ;
write(realnr : width : dec) ;
line length := line length + width
end , { realnrout I

procedure usecout(usec : microseconds ; width : integer)
begin
if line-length + width > maxoutput line then

newline ;

write(usec : width)
line length := line length + width
end , { usec out }

procedure obj print(obj : s exp)

procedure atom print(a : s exp)
begin { atomprint }
newline
if a = nil then

stringout(' nil ')
else if a = t then

stringout(' t ')
else

with a^ do
begin

{ uuuuuuuuuu user's atom printout uuuuuuuuuu }

stringout(' [') ;
usec out(toa_, 12)
stringout(' usec.,') ;
real nr out((180.0/pi) * bearing, 7, 2)
stringout(I deg.,') ;
real nr out(amplitude, 6, 3)
stringout(I volts]')

{ 1111111111 more lisp kernel: 1111111111 }
end

end ; { atomprint }

begin { obj print }
if obj^.atomic then

atomprint(obj)
else

begin
newline
stringout(' (')
while obj K> nil_ do

begin
objprint(obj^.car_)
obj := obj^. cdr_
end

stringout(I)I)
end

31

J.O. COLEMAN

end ; { objprint }

begin { printf }

newline
obj print(obj)
newline ;

printf := obj
end ; { printf }

{ uuuuuuuuuu user functions, procedures: uuuuuuuuuu }

function iabs(i : integer) : integer

begin { iabs }

if i < 0 then
iabs := - i

else
iabs := i

end ; { iabs }

function nextfiledpulse : sexp

{ Builds an atom to represent a pulse, interpreting
integer data fields from the file DATA as relevant quantities }

const ok = 0 ; { see asc subprogram library.. }
eof = #8100 ; { .. notebook page i9.000 re: word6 }
df = 1 ;

two_9th = #200

var out : s exp
eastv, northv : volts
status, source : integer
data : array [1..4] of integer

procedure unpack(var status, source : integer
var data : array [1..4] of integer)

fortran ; { see RATFOR section }

function atan2(var y, x : volts) : radians ; fortran

begin { nextfiledpulse }

out := nil_

repeat
unpack(status, source, data)

until(source = df) or (status = eof)

if status K> eof then
begin
assert (status = ok) and (source = df)
setq(out, getatom)
with out do

begin
eastv := ((two 9th - data[3]) * 5.0) / two 9th
northv := - ((two_9th - data[4]) * 5.0) / two_9th

32

NRL REPORT 8514

amplitude := sqrt(eastv * eastv + northv * northv)

if (eastv = 0.0) and (northv = 0.0) then
bearing := 0.0

else
bearing := atan2(eastv, northv)

if bearing < 0.0 then
bearing := bearing + 2.0 * pi

toa_ := (data[1] mod 2048) * 1000000 + data[21
end

end ;

next filed pulse := out
tempref(out)
end , { next filedpulse }

function betterof(train1, train2 : s exp) : sexp
var n2, n1 : integer

out : sexp

begin { betterof }

ref(train1)
ref(train2)
out := nil_

n1 := nr pulses(train1) ;
n2 := nrpulses(train2)

if n1 >= n2 then
setq(out, train1)

else
setq(out, train2)

better of := out
deref(train1)
deref(train2)
tempref(out)
end , { betterof }

function qual train(train : s exp) : integer

begin { qualtrain }

ref(train)

assert not train ^. atomic

with train do
if cdr = nil_ then

qua! train := 1
else if cdr(cdr_) = nil then

qual train := 2
else

qual train := 3

33

J.0. COLEMAN

deref(train)
end ; { qualtrain }

function perfect_fit(pulse, train : sexp) : s_exp

{ Detects the perfect fit of a pulse to a train. A perfect fit is

declared if the time of the pulse is within either JITTER SMALL
microseconds of the predicted time (predicted from the last two
pulses in the train) or within 0.5 % of the prediction interval of
the predicted time. }

var out temp : s_exp
error, lasttime, lastpri : microseconds

begin { perfectfit }

ref(pulse)
ref(train)
out temp := nil_

if cdr(train) = nil_ then
setq(out_temp, nil)

else
begin
last-time := toa(latestpulse(train))
last_pri : last-time - toa(next latestpulse(. train))

error := iabs(toa(pulse) - last-time - lastpri)

if (error <= jittersmall)
or (error / last pri <= 0.005) then

setq(outtemp, addpulse(pulse, train))
else

setq(outtemp, nil)
end ;

perfect fit := outtemp
deref(pulse)
deref(train)
tempref(out temp)
end ; { perfect fit }

function trainminus(a, b : s exp) :s_exp ;
var temp38, upa, remb, this b : s exp ;

begin { train-minus }

ref(a)
ref(b)
temp38 := nil_
upa := nil
rem b := nil_
this b := nil_

if a = nil then
setqT temp38, nil)

else
begin

34

NRL REPORT 8514

setq(this b, car(b))
setq(remb, cdr(b))
setq(upa, a) ;
while this b K> nil_ do

begin
setq(up_a, delq(thisb, up_a))
setq(this b, car(rem b))
setq(remb, cdr(remb))
end ;

setq(temp38, up_a)
end

train minus := temp38
derefT a)
deref(b)
deref(up_a)
deref(rem_b)
deref(thisb);
temp ref(temp38)
end , { trainminus }

function removepulses(best train, trains : s exp) : s_exp
var stripped, temp42, up-trains, remtrains,

this-train : sexp

begin { removepulses }

ref(best train)
ref(traiins) ;
temp42 := nil_
stripped := nil
uptrains := nil_
rem trains := nil_
this-train := nil_
setq(this train, car(trains))
setq(rem trains, cdr(trains))
setq(upTrains, nil)
while this train <>,nil do

begin -

setq(stripped, train minus(this train, best_train))
if stripped <> nil_ then

if memq(stripped, uptrains.) = nil then
setq(up trains, cons(stripped, -up trains))

setq(this train, car(remtrains))
setq(remTrains, cdr(remtrains))
end ;

setq(temp42, uptrains)
remove pulses := temp42
deref(best train)
deref(trains) ;
deref(stripped)
deref(uptrains)
deref(rem trains)
deref(this train)
temp ref(temp42)

35

J.0. COLEMAN

end ; { removepulses }

function best(trains : s exp) : sexp
var temp46, temp47, besttr, rem-trains, thistrain : s5exp

begin { best }

ref(trains)
temp46 := nil_
temp47 := nil_
best tr *= nil_
rem trains := nil_
this train := nil_

setq(thistrain, car(trains))
setq(rem_trains, cdr(trains))

if this train K> nil then
setq(temp47, nil_)

else
setq(temp47, t)

while temp47 = nil_ do
begin
setq(best tr, better of(best tr, this train))
setq(this-train, cart remtrains))
setq(remtrains, cdr(remtrains))
if this-train K> nil_ then

setq(temp47, nil)
else

setq(temp47, t)
end ;

setq(temp46, besttr)
best := temp46
deref(trains)
deref(temp47)
deref(best tr)
deref(rem trains)
deref(this train)
temp_ref(temp46)
end ; { best }

function decide(trains : s exp) : s exp
var temp48, temp49, best train, dectrains, rem-trains : sexp

begin { decide }

ref(trains) ;
temp48 := nil_
temp49 := nil_
best train := nil_ ;
dec trains := nil_ ;
remtrains := nil_ ;

setq(remtrains, trains)
36

NRL REPORT 8514

if rem-trains <> nil_ then
setq(temp49, nil_)

else
setq(temp49, t)

while temp49 = nil_ do
begin
setq(best train, append(best(rem trains), nil_))
setq(rem trains, remove pulses(best-train, rem trains))
setq(dec-trains, cons(-besttrain, dec trains))

if rem trains <> nil then
setq(temp49, nil)

else
setq(temp49, t)

end ;

setq(temp48, dectrains)

decide := temp48
deref(trains)
deref(temp49)
deref(best train)
deref(dec trains')
deref(rem-trains)
tempref(temp48)
end , { decide }

function fitsok(pulse, train : s exp : s_exp

{ Declares an OK fit of a pulse to a train if the new time interval
(between PULSE and the last pulse in TRAIN) is within 5 % of the
previous interval (as determined from the last two pulses in
TRAIN). }

var temp5l : s_exp
lasttime, lastpri : microseconds

begin { fits ok }
ref(pulse) ,
ref(train)
temp5l := nil_

if cdr(train) = nil then
setq(temp5l, addpulse(pulse, train))

else
begin
last time := toa(latestpulse(train))
lastpri := lasttime - toa(nextlatestpulse(train))

if (iabs(toa(pulse) - last-time - lastpri)
/ last pri)

<= 0.05 then

setq(temp5l, addpulse(pulse, train))
else

setq(temp5l, nil_)

37

J.0. COLEMAN

end

fits ok := temp5l
deref(pulse)
deref(train)
tempref(temp51)
end

function updateperfect(pulse, trains : s exp) : sexp
var temp55, temp59, temp58, fitted, up Trains, any_perfect,

remtrains, this_train : s exp

begin { updateperfect }

ref(pulse)
ref(trains)
temp55 := nil_
temp59 := nil_
temp58 := nil_
fitted := nil_
uptrains := nil_
anyperfect := nil_
rem trains := nil_
thistrain := nil_

if trains = nil then
setq(temp55, cons(init train(pulse), nil_))

else
begin
setq(this train, car(trains))
setq(remtrains, cdr(trains))
setq(anyperfect, nil)
setq(up_trains, nil_
while thistrain <> nil_ do

begin
setq(fitted, perfectfit(pulse, this-train))
if any-perfect <> nil_ then

setq(temp58, any_perfect)
else

setq(temp58, fitted)

setq(anyperfect, temp58)
if fitted <> nil then

setq(temp59, fitted)
else

setq(temp59, this-train)

setq(uptrains, cons(temp59, up_trains))

setq(this train, car(remtrains))
setq(remTrains, cdr(remtrains))
end ;

if any-perfect K> nil then
setq(temp55, up_trains)

38

NRL REPORT 8514

else
setq(temp55, nil_)

end ;

updateperfect := temp55
deref(pulse)
deref(trains)
deref(temp59)
deref(temp58)
deref(fitted)
deref(uptrains)
deref(anyperfect)
deref(remtrains)
deref(this train)
temp ref(temp55)
end , { updateperfect }

function updateok(pulse, trains : s5exp) : s exp
var temp6o, temp63, fitted, up_trains, remtrains,

this-train : sexp

begin { update ok }
ref(pulse)
ref(trains)
temp60 := nil_
temp63 := nil_
fitted := nil_
up trains := nil_
rem trains := nil_ ;
this-train := nil_ ;

if trains = nil then
setq(temp6o, cons(inittrain(pulse), nil_))

else
begin
setq(this train, car(trains))
setq(rem trains, cdr(trains))
setq(uptrains, trains) ;
while this_train <> nil_ do

begin
setq(fitted, fits ok(pulse, this train))
setq(this train, car(rem trains T) ;
setq(remtrains, cdr(rem-trains))

if fitted K> nil_ then
setq(temp63, cons(fitted, uptrains))

else
setq(temp63, uptrains)

setq(uptrains, temp63)
end

setq(temp6O, up trains)
end ;

update ok := temp6O
deref(pulse) ;

39

J.0. COLEMAN

deref(trains)
deref(temp63)
deref(fitted)
deref(up trains)
deref(rem trains)
deref(this train)
temp_ref(temp60)
end ; { updateok }

function update(pulse, trains : sexp) : sexp
var temp64, temp65 : sexp

begin { update }

ref(pulse)
ref(trains)
temp64 := nil_
temp65 := nil_

setq(temp65, updateperfect(pulse, trains))

if temp65 K> nil then
setq(temp64, temp65)

else
setq(temp64, cons(init train(pulse),

update_ok(pulse, trains)))

update := temp64
deref(pulse)
deref(trains)
deref(temp65)
temp_ref(temp64)
end ; { update }

procedure summarize(train : s exp
var s : summary)

var rem-train, pulse : s_exp
prev_toa,
interval, sminterval : microseconds
totalintervals, nrintervals : integer

macro nextpulse(train) =
begin
setq(pulse, car(train))
setq(remtrain, cdr(train))
end " I

update interval
with pulse^ do

begin
interval := prevtoa - toa_
prevytoa := toa_
end " ;

begin { summarize }

ref(train) ;
pulse := nil_

40

NRL REPORT 8514

rem train := nil_

with s do
begin
if train = nil then

begin
n := 0
bearing.mu := 0.0
bearing.sigma := 0.0
amplitude.mu := 0.0
amplitude.sigma := 0.0
pri.mu := 0.0 ;
pri.sigma := 0.0
time.earliest := 0
time.latest := 0
end

else
begin
nextpulse(train)
n := 1
if rem-train = nil then

with pulse' do
begin
s.pri.mu := 0.0
s.pri.sigma := 0.0
s.bearing.mu := bearing
s.amplitude.mu := amplitude
s.bearing.sigma := 0.0 ;
s.amplitude.sigma := 0.0
time.earliest := toa_
time.latest := toa
end

else { n > 1 }

begin
time.latest := toa(pulse)
prev toa := time.latest ;
sm interval := maxmicroseconds
with pulse^ do

begin
s.bearing.sum := bearing
s.amplitude.sum := amplitude
end

repeat
nextpulse(remtrain)
n := n + 1 ;
with bearing, pulse^ do

sum := sum + bearing
with amplitude, pulse' do

sum := sum + amplitude
update-interval ;

if interval < sm interval then
sm interval := interval

until rem-train = nil_
41

J.0. COLEMAN

time.earliest := toa(pulse)
with bearing do

mu := sum / n
with amplitude do

mu := sum / n

nextpulse(train)
prev toa := time.latest
totalintervals := 0 ,

with bearing, pulse^ do
sumsq := sqr(bearing - mu)

with amplitude, pulse^ do
sumsq := sqr(amplitude - mu)

repeat
next pulse(rem-train)

{ note the sumsq's are used for 2nd central
moment accumulation }

with bearing, pulseA do
sumsq := sumsq + sqr(bearing - mu) ;

with amplitude, pulse' do
sumsq := sumsq + sqr(amplitude - mu-)

update interval ;
nr intervals :_ round(interval / sminterval)
total intervals := total-intervals + nr intervals

until rem-train = nil_
with time do
pri.mu := (latest - earliest) / total-intervals;

with bearing do
sigma := sqrt(sumsq / (n - 1))

with amplitude do
sigma := sqrt(sumsq / (n - 1))

if n = 2 then

pri.sigma := 0.0
else

begin
setq(remtrain, cdr(train))
prevtoa *= time.latest
pri.sumsq := 0.0

repeat
next pulse(remtrain)
updateeinterval-;
nrintervals := round(interval

/ sm interval)
pri.sumsq := pri.sumsq

+ nr intervals
* sqr(interval

/ nr intervals-pri.mu)
until rem train = nil_

42

NRL REPORT 8514

pri.sigma := sqrt(pri.sumsq
/ (total intervals -1)) 0

end
end

end

with time do
if (earliest < 0) and (latest < 0) then

case last cycle of
athour:

begin
earliest := earliest + hourcycle
latest := latest + hour-cycle
end ;

at 34 08:
begin
earliest := earliest + toacycle
latest := latest + toa cycle
end

end { case }
end

deref(rem train)
deref(pulse)
deref(train)
end ; { summarize }

function getmask : s exp
var lb,ubout : sexp

begin { getmask }

lb := nil_ ;
ub := nil_ ;
out := nil_

while not eof do
begin
if input' = 'c' then

begin
readln
setq(out, cons(t, out))
end

else
begin
setq(lb, getatom)
with lb^ do

begin
readln(toa_ , bearing, amplitude)
bearing := bearing * pi / 180.0
end ;

setq(ub, getatom)
with ub^ do

begin
43

J.O. COLEMAN

readln(toa_ bearing, amplitude)
bearing := bearing * pi / 180.0
end ;

setq(out, cons(cons(lb, cons(ub, nil_)), out))
end ;

if not eof then
readln

end ;

setq(out, reverse(out))

getmask := out
deref(lb)
deref(ub,)
temp ref(out)
end { get mask }

function sort(pulses : s exp) : s_exp

{ Serves as an interface to GROUP, the real Sorter. SORT handles
control input, and summarizes the sorted groups in file
SUMMARYS. I

var thisgroup, trains, oldgroups,
out, last_pulse, pulsemask : sexp

max used pulses, used-pulses : integer

groupsummary : summary ;

summarys : file of summary

function getpulse : sexp ;

{ Gets the next available input pulse. Uses a buffered pulse
stored by PUTPULSE if available. Requires pulses to pass
through masks kept in PULSEMASK. Uses local procedure CYCLE
to reduce all times in the system by the appropriate amount
when the TOA_ fields in the input stream cycle back to (near)
zero. Keeps track of total number of pulses used. }

label 1, 2, 3 ;

var pulse, out : sexp
deltoa : microseconds

macro exit = " 1 " ; { for labels }
test - 2 "
nextpulse = " 3 "
test passed(field) =

((pulse mask^.car ^.car-'.field
<= out^.field)

and (out^.field
44

NRL REPORT 8514

<= pulsemask-.car '.cdr acar a.field)) " ;
procedure cycle(1 : sexp) ;

begin { cycle }

ref(1);

if 1 K> nil then
with l^ do

if atomic then
if toa > 0 then

{ some atoms in multiple trains }
case lastcycle of

athour:
toa := toa - hourcycle

at 34 08:
toa := toa_ - toa cycle

end { case I
else { make next else go with prol

else
begin

{ non-std
cycle(car(
cycle(cdr(
end ;

'I
ry"

t=-

)er if }

(pascal) use of with }
1)) i
1))

deref(1)
end ; { cycle I

begin { getpulse }
out := nil_ ;
pulse := nil_ ;

repeat
repeat

nextpulse:
if pulses =

.setq(
else

begin
setq(
setq(
setq(
end ;

{ referenced twice }
from-file then
out, next filedpulse)

pulse, car(pulses)) ;
pulses, cdr(pulses)) ;
out, pulse)

if (out K> nil_) and (lastpulse K> nil) then
begin
del toa := toa(out) - toa(lastpulse)
if del toa < -900000000 { 15 min. } then

I test against 0 triggers on data flaws }
begin
if del toa > - hour cycle then

lastcycle := athour
else

lastcycle := at_34_08

45

J.O. COLEMAN

cycle(trains) ;

while car(pulse mask) <> t do
setq(pulse_mask, cdr(pulsemask))

setq(pulsemask, cdr(pulse-mask))
end

end ;

setq(lastpulse, out)
if out = nil then

begin
setq(pulses, nil_)
goto exit
end

test: { referenced once }
if pulse mask = nil_ then

goto exit
if car(pulse mask) = t then

goto nextpulse
if toa(out) < toa(caar(pulse mask)) then

goto next_pulse ; { failed lower bound }

if toa(out) > toa(cadar(pulsemask)) then
begin { failed upper bound }
setq(pulsemask, cdr(pulse_mask))
goto test
end

until testpassed(bearing)
until test_passed(amplitude)

exit: { referenced twice }
usedpulses := usedpulses + 1

if used pulses >= max usedpulses then
setq(pulses, nil -)

getpulse := out
deref(pulse)
tempref(out)
end ; { getpulse }

function putpulse(pulse : s exp) : s exp

{ Returns PULSE to the input stream, decrementing the count of
pulses used accordingly. }

var out : sexp ;

begin { putpulse }

ref(pulse) ;
46

NRL REPORT 8514

out := nil_

setq(pulses, cons(pulse, pulses))
setq(out, pulses) ;
usedpulses := usedpulses - 1

putpulse := out
deref(pulse)
tempref(out)
end , { putpulse }

function groups : sexp
var temp66, dummy, temp67, pulse, out-trains : s exp

function outputaged(pulse : s exp) : sexp
var temp37, rem trains, this train,

thinold, thisold, rem, this,
out : s5exp ;
time: microseconds;

function old(train : s exp) : sexp

{ Declares a train to be old if either it contains
MAX TRAIN LENGTH (or more) pulses, it has gone over
MAXPRI microseconds without updating, or it has two or
more pulses and the train's next predicted pulse time
(predicted from the last two pulses) has been missed by
more than JITTERLARGE microseconds.

var lastt : microseconds
out : sexp
1 : integer

begin { old }

ref(train)
out := nil_

1 := nr pulses(train)
last t := toa(latestpulse(train)) ;

if 1 >= max trainlength then
setq(out, t)

else if time - lastt > maxpri then
setq(out, t)

else if 1 K> 1 then
if time - last t

> jitterlarge
+ (last t

- toaT next_latest_pulse(train))) then
setq(out, t)

old := out
deref(train)
temp ref(out)
end , old }

47

J.0. COLEMAN

begin { outputaged }

ref(pulse)
out := nil_
temp37 := nil_
rem trains := nil_ ;
this train := nil_ ;
thin old := nil_ ,
this old := nil_ ;
rem :- nil_
this := nil_
time := toa(pulse)

setq(this, car(trains))
setq(rem, cdr(trains))
while this K> nil_ do

begin
if old(this) K> nil_ then

begin
setq(trains, delq(this, trains))
setq(out_trains, cons(append(this, nil_),

out trains))
end ;

setq(this, car(rem))
setq(rem, cdr(rem))
end ;

setq(this old, car(out trains))
setq(rem, cdr(outtrains))
setq(thinold, nil_) ;
while this old K> nil_ do

begin
setq(this train, car(trains))
setq(rem trains, cdr(trains))
while (this train <> nil)

and (this old K> nil_) do
begin
if qual train(this old)

<= qual_train(this train) then

setq(this_old,trainminus(thisold, thistrain))
setq(this train, car(rem trains))
setq(remtrains, cdr(rem-trains))
end ;

setq(trains, remove_pulses(thisold, trains))

if this-old K> nil_ then
setq(temp37, cons(thisold, thin-old))

else
setq(temp37, thin-old)

setq(thinold, temp37) ;
48

NRL REPORT 8514

setq(this old, car(rem)) ;
setq(rem, cdr(rem))
end

setq(out trains, thin_old)
setq(out trains, decide(out trains)) ;
{ Note OUT TRAINS is updated

explicitly here, rather than in GROUPS. }
setq(out, outtrains)
output aged := out
deref(pulse)
deref(temp37)
deref(rem trains)
deref(this train)
deref(thin old)
deref(this old)
deref(rem ;
deref(this)
tempref(out)
end I { outputaged }

begin { groups }

temp66 := nil_
dummy := nil_
temp67 := nil_
pulse := nil_
outtrains :- nil_

setq(pulse, getpulse)

if out trains <> nil then
setq(temp67, out trains)

else if pulse K> nil then
setq(temp67, nil_)

else
setq(temp67, t)

while temp67 = nil_ do
begin
setq(trains, update(pulse, trains))
setq(dummy, outputaged(pulse))
i Note OUTTRAINS is updated in OUTPUTAGED. }
setq(pulse, getpulse) ;

if out trains K> nil then
setq(temp67, out-trains)

else if pulse <> nil_ then
setq(temp67, nil_)

else
setq(temp67, t)

end ;

if out trains K> nil then
setq(dummy, put pulse(pulse))

else if trains K> nil_ then
49

1.0. COLEMAN

begin
setq(out trains, decide(trains))
setq(trains, nil_)
end ;

setq(temp66, outtrains)
groups := temp66
deref(dummy)
deref(temp67)
deref(pulse)
deref(out trains)
tempref(temp66)
end ; { groups }

function group : s_exp
var temp68, grp : s exp

begin { group }

temp68 := nil_
grp := nil_ ;

if old_groups K> nil_ then
begin
setq(grp, car(oldgroups))
setq(old_groups, cdr(old_groups))
setq(temp68, grp)
end

else
begin
setq(old_groups, groups)
if old groups <> nil then

setq(temp68, group)
else

setq(temp68, nil)

end

group := temp68
deref(grp) ;
tempref(temp68)
end , { group }

begin { sort }

ref(pulses)
out := nil_
this group := nil_
trains := nil_ ;
old_groups := nil_
lastpulse := nil_
pulsemask := nil_

usedpulses := 0

reset(input) ;
50

NRL REPORT 8514

if eof then
max usedpulses := defaultmaxpulses

else
begin
readln(maxusedpulses)
readln
end

setq(pulse mask, printf(get mask))
setq(thisgroup, group)
re'peat

summarize(thisgroup, groupsummary)
write(summarys, group summary)
setq(thisgroup, group)

until this group = nil
setq(out, nil_)
sort := out ;
deref(pulses)
deref(thisgroup)
deref(trains)
deref(old groups)
deref(last_pulse)
deref(pulse mask)
tempref(out)
end , { sort }

function atom with time(time : microseconds;) : s exp
var out : sexp

begin { atomwith time }
out := nil_

setq(out, getatom)
out ^ toa := time
out ^. bearing := 0.0
out ^. amplitude := 0.0

atom with time := out
tempref(out)
end ; { atom withtime }

function train(start, pri : microseconds ; n : integer) : s_exp
var out : sexp

begin { train }

out := nil_ ;

if n = 0 then
setq(out, nil_)

else
setq(out, cons(atom with time(start),

train(start + pri, pri, n - 1)))
51

J.0. COLEMAN

train := out
tempref(out)
end ; { train }

function merge2(list1, list2 : s exp) : sexp
var temp12, temp11, out : s exp

begin { merge2 }

ref(list1)
ref(list2)
out := nil
temp12 := nil_
temp1l := nil_

if list2 <> nil then
setq(templ, nil)

else
setq(temp1l, t)

if temp1l K> nil_ then
setq(out, list1)

else
begin

if list1 K> nil then
setq(temp12, nil)

else
setq(temp12, t)

if temp12 K> nil then
setq(out, list2)

else if toa(car(list1)) < toa(car(list2)) then
setq(out, cons(car(list1),

merge2(cdr(list1), list2)))
else

setq(out, cons(car(list2),
merge2(list1, cdr(list2))))

end

merge2 := out
deref(list1)
deref(list2)
deref(temp12)
deref(templ1)
tempref(out)
end ; { merge2 }

{1111111111 lisp system initialization: 1111111111 }

begin { main program }
new(nil_, false) ;
nil ^. atomic := true
nil ^. refcount := 1
nil ^. car_ := nil_ ;
nil ^. cdr_ := nil_ ;

52

C:

NRL REPORT 8514

garbage.lists := nil_ ; _
garbage.atomic := nil_

conses created := 0
atomscreated := 0

new(t, true)
t ^. atomic := true
t refcount := 1

{ uuuuuuuuuu user main program here: uuuuuuuuuu }

dummy := nil_
from file := nil_

setq(from file, getatom) ; { used as a constant }

setq(dummy, sort(from file))
deref(dummy)
deref(fromfile)
{ 1111111111 lisp debugging info: 1111111111 }

writeln
writeln
writeln(' conses created:', conses-created)
writeln ;

writeln(' atoms created:', atoms-created)
writeln

writeln(' conses in garbage:', stacklength(garbage.lists))
writeln
writeln(' atoms in garbage:', length(garbage.atomic))
end . { main program }

53

J.O. COLEMAN

RATFOR Input Routines for PASCAL Program

global macro definitions
[# add assert statement
version jcOO

syntax: <assert statement> ::= assert (<condition>) @istrue
#t ,assert (<condition>) @isfalse

if any assertions are present in a routine then either
assertions or @noassertions must be expanded prior to
the first assertion

define(~assertions,
define(~assert, if)
define(@istrue, ; else [write(6,12345) ; call abend I)
define(@isfalse, [write(6,12345) ; call abend I)
12345 format('lerror in assertion')
)

define(@noassertions,
define(~assert, #)
define(@istrue,)
define(@isfalse,)

]

[
define(@radar, 2)
define(Qdf, 1)
define(@ok, 0) # see asc subprogram library..
define(Qeof, (8*16**3 + 16**2)) # ..notebook page i9.000 re: word6
define(@bor, -1) # beginning of record
]
end

unpack - get an unformatted radar or df detection -
subroutine unpack(status, type, data)
@assertions # turn-on

[# arguments (#i = input, #o = output)
integer*4 status, #o Qok or @eof

type, #o either @radar or @df
data(4) #o unpacked detection
element : type = @df @radar
_ ____________________

1 : sec msec32
2 : usec range
3 : east az

4 : south el

I

c
c

54

NRL REPORT 8514

c version jcO8.1
c started 4/15/80
c last modified 2/25/81
c by j. coleman, nrl code 5312, wash dc 20375, 767-2399
c
c unpacks and returns a detection from an experimental
c data file. the experimental quantities are left in
c their original units. acnm = data.
c
c differs from version jcO8 in tha-t ̂ = has been used for .ne.
c

[# non-common variables & constants
integer*4 word16, # function to fetch next word

word, # word fetched from file (16 bit right just)
wrdnr, # word number within detection (not in order)
wrdtyp, # word type indicator (1 => radar, 2 => df)
ij, # loop counters
msknr, # mask for word number field
msktyp, # mask for word type field
msk2(4), # masks for fields contributing to data(2)
shft(4) # shifts for fields contributing to data(2)

data msknr / zO0000003 /, # bits 0, 1
msktyp / z00008000 /, # bit 15
msk2 / z0000001c , # bits 2-4

z0000001c , # bits 2-4
zOO0O7ffc , # bits 2-14
z000004 /, # bit 2

shft / -2,
1 ,

4 ,
17 /

]

[# common /unpbuf/
integer*4 buffer(4,2) # buffer to accumulate detections
common /unpbuf/ buffer

repeat # until complete detection test is passed
repeat # until last word of a detection has been buffered

[
status = wordl6('data ',status,word)
if(status == Oeof)

return
if(status == Qbor) # beginning of record

[
do i 1, 2

do j = 1, 4
buffer(j,i) = 0

status = Wok
]

&assert(status == @ok)@istrue
@assert(word < 2**16)@istrue # zeros in left halfword

55

J.O. COLEMAN

wrdnr = 1 + and(word, msknr) # wrdnr in [1..4]
wrdtyp = 1 + lshf(and(word, msktyp), -15) # wrdtyp in [1,21
buffer(wrdnr, wrdtyp) = word
I

until(wrdnr == 1) # last word of a detection
until(buffer(2,wrdtyp) ^ 0

& buffer(3,wrdtyp) ^= 0
& buffer(4,wrdtyp) ^ 0) # test for complete detection

if(wrdtyp == 2)
[
type = @radar
data(1) = lshf(and(buffer(2,2), compl(msktyp)), -2)
data(2) = lshf(and(buffer(3,2), compl(msktyp)), -3)
data(3) = lshf(and(buffer(4,2), compl(msktyp)), -3)
data(4) = lshf(and(buffer(1,2), compl(msktyp)), -2)
I

else
[
@assert(wrdtyp == 1)@istrue

type = @df
data(1) = lshf(buffer(4,1), -3) # sec
data(2) = 0
do i = 1, 4 # usec

data(2) = or(data(2),lshf(and(msk2(i),buffer(i,1)),shft(i)))
data(3) = lshf(buffer(2,1), -5) # east
data(4) = lshf(buffer(1,1), -5) # south
I

do i = 1, 4 # immunizes for a class of data recording errors
buffer(i, wrdtyp) = 0

return
end

word16 - get a 16 bit word from a data file -
integer function word16(acnm, stat, word) # word16 = stat
[# arguments (#i = input, #o = output)
integer*4 acnm(2), #i 8 char file acnm, left just, blank padded

stat, #o a status, in [Qok, Ebor, Qeof I
word #o 16 bit word from file, right just, 0 padded

I

c version jc0l.1
c started 4/16/80
c last modified 2/25/81
c by j. coleman, code 5312 nrl, wash dc 20375, 767-2399
c
c returns successive 16 bit words from the file <acnm> on
c successive calls. the file may have multiple records
c
c differs from version jc0l in that ^= has been used for .ne.
c

56

NRL REPORT 8514

[# common /wl6buf/ 'static', local, *init in block data w16bd
define(@inpbufsize, 16384)
integer*4 inpbuf(@inpbufsize), # input buffer for readfl

last16, #* index of last used inbuf halfword
mskwrd, #* mask for right halfword= z0000ffff
param(14) #* readfl interface

equivalence (param(1), fname),
(param(4), reclen),
(param(6), status)

integer*4 fname(2), #* file to read from (acnm)
reclen, #* record length (bytes) read
status #* status returned by readfl

common /wl6buf/ last16, mskwrd, param, inpbuf
I

stat = @ok # default, subject to change

if(last16 >= reclen/2) # ignore any odd nred byte at record end
[
last16 = 0

fname(1) = acnm(1) ; fname(2) = acnm(2)
call readfl(param, inpbuf)

if((reclen+3)/4 > @inpbufsize) # overflow?
[
write(6,2) reclen ; 2 format('lreclen =',i7)
call abend

if(status == @eof)
[
stat = Qeof
word16 = @eof
return
I

if(status ^= @ok)
[
write(6,1) status; 1 format('lstatus = ',z8,' hex')
call abend
I

stat = @bor # beginning of record
I

if(mod(last16, 2) == 0)
word = lshf(inpbuf(1+last16/2), -16) # integer divide

else
word = and(inpbuf(1+1ast16/2), rnskwrd) # integer divide

last16 = last16 + 1

word16 = stat

return
57

1.0. COLEMAN

end

wl6bd - block data for word16 -
block data

c vers jcO2

[# common /wl6buf/ 'static', local, *init in block data wl6bd
define(@inpbufsize, 16384)
integer*4 inpbuf(Qinpbufsize), # input buffer for readfl

lastl6, #* index of last used inbuf halfword
mskwrd, #* mask for right halfword= z0000ffff
param(14) #* readfl interface

equivalence (param(1), fname),
(param(4)), reclen),
(param(6), status)

integer*4 fname(2),
reclen,
status

#* file to read from (acnm)
Jf* record length (bytes) read
#* status returned by readfl

common /wl6buf/ last16, mskwrd, param, inpbuf
I

data last16 /
mskwrd /
reclen /
param(3) /
param(7) /
param(9) /
param(1 3)/
param(1 4)/

end

@inpbufsize
z0000ffff

0
0
0
0
0
0

/, # must have last16 >= reclen/2

/

58

